

Optimum Spiral Inductor Synthesis for UMC's Virtual Inductor Library using EMX®

Integrand Software Inc.

www.integrandsoftware.com

 $\frac{Integrand}{Software, Inc.}$

Public Presentation at UMC booth June 14/15, at DAC 2005

Outline

- Collaboration between UMC and Integrand
 - Industry first "virtual" inductor library for 0.13um
 - Scalable models and synthesis tools within FDK
- EMX®
 - electromagnetic simulation of passives
- EMX-ContinuumTM
 - scalable models of spiral inductors
- The Optimum Inductor FinderTM
 - Layout synthesis within Cadence Virtuoso® environment

– Enabled by

EMX

- Electromagnetic simulation
 - Simulation engine for analysis of passive structures
 - DAC 2004
 - S. Kapur and D. E. Long, *Large-scale full-wave simulation*, pp 806-809.
 - EMX is extremely fast and very accurate
 - 10X-100X faster than other commercial simulators
- Distinguishing features
 - 1. Electromagnetics (accuracy)
 - 2. Numerical Analysis (speed)
 - 3. Software (user friendly)

"EMX: Software Network Analyzer"

Electromagnetics (accuracy)

$$E_s(r) = \frac{1}{\sigma}J(r) + j\omega A(r) + \nabla\phi(r).$$

- Physical Effects on ICs
 - R,L,C and Substrate effects unified and fully coupled
- Inductance
 - Distributed 3D volume currents
- Resistance
 - Skin effect and volume loss
- Capacitance
 - Accurate sidewalls MOM caps
 - Thin-film MIM caps
- Substrate
 - Multi-layered lossy substrates
 - Substrate doping and bias

3D mesh of UMC inductor

Numerics (speed)

- Integral Equation Based 3D EM field solver
 - Preconditioned Iterative methods
 - New "Full-Wave" FMM
 - Layout-regularity exploiting
 - Adaptive Fast Frequency Sweep using Krylov Subspace techniques
- Speed
 - 2 orders of magnitude faster than finite-element, 1 order faster than BEM

UMC inductor

9244 basis functions13692 vector potential elements4877 scalar potential elements

Freq Range	Frequencies	Time	Memory
5 GHz	1	40 sec	7 MB
0.1 to 20 GHz	Sweep (201)	90 sec	22 MB

 $\frac{Integrand}{Software, Inc}$

Software (user friendly)

- Processing "true" layout for UMC
 - 0.13um slotting rules, via arrays, metal fill
 - Context dependent vias (m1, poly)
 - Automatic growing/shrinking of layout geometry for scaling/bias and statistical analysis
 - Simply write scripts or programs to do 1 or 10s of simulations at a time
- Extensively used at UMC for
 - Inductors/Transformers/Capacitors
 - Open/Short De-embedding Structure Improvement
 - Coupling Analysis
 - Substrate Analysis

 $\int \frac{Integrand}{Software, Inc.}$

8

 $\int \frac{Integrand}{Software, Inc.}$

Scalable Models

- "Scalable" Models of Inductors
 - Spice models parameterized by geometry
 - Critical for foundry model libraries
- Traditionally
 - Active devices (simple geometry, MOSFET)
 - Simple passives (plate capacitors, A/d)
 - Either not done for inductors or done "poorly"
 - Conventional Wisdom: Inductor models are difficult to parameterize due to large design space

Design Space of Inductors

- Design space is large (5D)
- Covers every conceivable inductor

Design Space nt: 1.5 to 7.5 turns w: 3um to 10um s: 1.5um to 5um od: 75um to 300um f: DC to 20GHz

Smoothness of Space

- Intuition
 - For all passive structures
 - Small changes in geometry
 - result in *small* "smooth" changes in electrical characteristics

s=1.5um, nt=3.5

2D Projection

Parameterized Model

Every component in subcircuit is accurately captured by a function that is parameterized by geometry DAC 2005

Inductor Model

Lc = f1(w, od, nt, s)Csub1 = f2(w, od, nt, s)Rsub2 = f3(w, od, nt, s)

Scalable Model vs Table Lookup

• RLCK model has several advantages

- Compact representation
- Portable across Spice simulators
 - Spectre, ADS, Eldo, HSPICE
- Noise analysis and transient behavior correct
- Table lookups are always "clunky"
 - Discontinuous
 - Non-portable
- Spice models are C^{∞}
 - usable in a gradient-based design space search
- Main difficulty is automatically building the spice representation

EMX-ContinuumTM

- Scalable Model Generator
 - Discretization of space
 - Built from 1000s of individual inductor simulations
 - EMX as simulation engine
 - Proprietary techniques used to develop "unified" model
 - Accurate to few percent for L and Q compared to EMX simulation (user specified tolerance)
 - Pure RLCK Spice
 - Passive by construction
 - Noise analysis correct

The Optimum Inductor Finder

- Design Space Prober
 - Finding optimal inductor design
 - Using the scalable spice models
 - Gradient-based approach for finding designs in high-dimensions
 - Accurate within a few percent of EMX
 - Almost instantaneous playback (5-10s)
 - GUI interface in Cadence Virtuoso
 - Enabled by Integrand's membership in the Cadence Connections Program
 - Integrated with UMC FDK
 - Can make Area/Q/Bandwidth tradeoffs for optimal design synthesis

Hide	Cancel	Defaults		Help				
Library	EMX013			Browse				
Cell	LNW_CR20K_RFVIL							
View	v symbol							
Names	Names L1							
Magaia	,							
MUSAUC	l l	Rows 1	Columns 1					
		>elta y 0.06	Delta X 0	.04				
Magnifica	tion <u>1</u>							
Rotate	9	Sideways	Upsi	de Down				
Model Na	me	lnw_cr20k_rfvi	L					
Mode		Single Ended 🗕						
Outer Dia	meter	150u <u>M</u>						
Metal Wid	lth	6u M_						
Metal Spa	acing	1.8u M						
Number a	f Turns	3.5						
Freq		56 Hž						
baluctand	:e	2.309347n H						
Q		14.69629						
SRF		18.70693G Hz						
Paramete	irs	valid						
		Plot						
	Optimum Inductor Finder							

Maximize Q

- Maximizing Q is one of the most important metrics of inductor design
- Given inductance
- Find the inductor
 - With best Q
 - No constraint on area
- About 5s run time

	ок	Cancel	Default	s Apply									Help
	Model		l	nw_cr20k_r	fvil	Γ							
	Mode		S	ingle Ende	d	ſ							
	Constra	int:	M	aximize Q	-							About	
		Ele	ectrical Ir	▶ put Param	eters								
_	Inducta	nce	2	nHį		1	Delta	L (per	cent)	ľ			
	Center	Frequency ((Hz) 5	Ĭ		J	Bandw	vidth ((Hz)	Ŭ			
	Desired	Q	0			[
	Desired	Area	1	≥9 9 <u>″</u>]							
		De	sign Para	uneters									
	ŧ		1	. 999865e-0	9	[
	Q		1	5.62126		I							
	Area (i	i są microix	»} 6	2039.1		I							
	W 10	e-05	00	0.0002093	5 er	2.5		8	1.5e-06		SRF	1.666299e+10	
			Plot										

Minimize Area

- 50% of the area on a typical RF chip is consumed by inductors due to large area requirement
- Can find inductors with slightly less Q but much less area
- Given Inductance
- Find the inductor
 - With at least user-specified Q
 - With minimum area

Optimal Inductor Design for UWB

The goal of UWB design is to "flatten the inductance"

Active

Differential Design

Mode	Differential 🖃						
Outer Diameter	150น Mั						
Metal Width	би Й						
Metal Spacing	1.5u <u>M</u>						
Number of Turns	3						
Freq	56 Hz						
tuructance	1.869562n H						
a	16.37873						
SRF	24.64275G Hz						
Parameters	valid						
Plot							
Optimum Inductor Finder							

• Differential model operation to reduce capacitive substrate loss

9.00 2Ø 7.ØØ K 5.00 1Ø 3.ØØ 1.00 Ø.Ø 1Ø GHz 2Ø 1Ø GHz Ø.Ø Ø.Ø 2Ø R: hiRepeat() mouse L: avvMouseSingleSelectPtCB() M:

3Ø

Markers Annotation Edit Tools

Zoom Axes

11.Ø

Curves

Single Ended vs Differential Inductor

UMC's FDK with the Optimum Inductor Finder

Typical Model Accuracy

Conclusion

- UMC Research and Development Team
 - DS: Tsun-Lai Hsu, Tony CP Liao, Liwei Lin, Jeff Liu
 - CRD: Yu-Chia Chen, Bigchoug Hung, Alfred H.C. Tseng, Victor Liang
 - UMC-USA: Zheng Zeng, Jin Shyong Jan, L.C. Yeh
- Successful and ongoing collaboration between UMC and Integrand Software Inc.
 - Extend the functionality of the UMC FDK to develop scalable models for other passives