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ABSTRACT
We describe a new extraction tool, EMX (Electro-Magnetic
eXtractor), for the analysis of RF, analog and high-speed
digital circuits. EMX is a fast full-wave field solver. It incor-
porates two new techniques which make it significantly faster
and more memory-efficient than previous solvers. First, it
takes advantage of layout regularity in typical designs. Sec-
ond, EMX uses a new method for computing the vector-
potential component in the mixed potential integral equa-
tion. These techniques give a speed-up of more than a factor
of ten, together with a corresponding reduction in memory.

1. INTRODUCTION
We believe that full-wave field solvers can be made prac-

tical for the extraction of the moderate-sized circuits and
blocks typical of RF and analog design. If this can be done,
the current hodgepodge of pattern matching, static approx-
imations, and individual point tools for capacitance, induc-
tance, substrate coupling, etc., can be eliminated for these
applications. Towards this end, we introduce EMX, a new
full-wave field solver targeted at high-speed IC design. It
extracts interconnect and passive components, and includes
all coupling effects and the interaction with the substrate.
EMX is still a work-in-progress, but even in its present state,
it is already ten to thirty times faster than current fast full-
wave field solvers.

The main problem with a patchwork approach is in stitch-
ing the different effects together in a consistent way. Cor-
rectly accounting for coupling and frequency-dependent ef-
fects is difficult without a unified formulation that can han-
dle all of the effects together.

The first generation of fast field solvers used dense matrix
compression methods such as the Fast Multipole Method
(FMM), the Precorrected-FFT (PFFT), and SVD compres-
sion [3, 4, 5, 6, 10]. All these methods conceptually in-
volve decomposing the matrix into a direct part, represented
explicitly, and a far-field part, represented in some sort of
factored form. EMX uses the FMM, but also incorporates
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Figure 1: Regular routing on a 10 GHz chip

several new ideas. This paper describes two of them: a tech-
nique for exploiting structural regularity in IC layouts, and
an efficient new method for computing the vector potential.

The first new idea in EMX is to exploit regularity. Typical
IC layouts are very regular in the following senses.

• Wires tend to be paths of constant width.

• The distance between adjacent routing is typically con-
stant for significant lengths of routing.

• Most routing is at 90 or 45 degree angles.

• Passive components like spiral inductors, capacitors,
baluns, etc., have a great deal of symmetry.

Figure 1 shows typical routing on a 10 GHz chip that ex-
hibits the sort of regularity discussed above.

The second key idea is that the vector potential inter-
actions (the most significant cost in a full-wave solve) can
be computed with about the same cost as a scalar inter-
action. The method depends on decomposing the currents
into divergence-free and curl-free parts. The divergence-free
parts give the dominant contributions to the vector poten-
tial, and these are captured exactly by the new method. The
less-important contributions of the curl-free part are approx-
imated, and we show that this approximation is accurate for
IC problems.

The combination of these two ideas leads to significant
time and memory savings. The largest example in section 5
is a quadrature VCO. EMX requires only about five minutes
to simulate this structure, and needs less than 100 MB of
memory for the matrices.
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Figure 2: Divergence-free basis function

2. FORMULATION
EMX uses a standard integral formulation for the prob-

lem. We assume a time-harmonic steady-state solution. In
the frequency domain, the stimulus electric field Es is ex-
pressed in terms of ohmic losses, the vector potential A and
the scalar potential φ:

Es(r) =
1

σ
J(r) + jωA(r) +∇φ(r). (1)

The vector and scalar potentials are obtained by integrat-
ing over the conductors: A(r) =

R

GA(r, r′)J(r′) dr′, and
φ(r) =

R

Gφ(r, r′)ρ(r′)dr′. J is the current density, ρ is the
charge density, GA is the vector potential Green’s function,
and Gφ is the scalar potential Green’s function.

For the numerical solution of the equations, the structure
is discretized into triangular and rectangular elements, and
a Galerkin scheme is applied. The individual basis functions
are composed of linear Rao-Wilton-Glisson rooftop func-
tions [7] defined on the shapes. To avoid ill-conditioning
at low frequencies, we adopt a set of basis functions that
decompose the current density into curl-free and divergence-
free parts [9]. The composition of basis functions in terms of
rooftops is expressed by an r× b sparse matrix V . Similarly,
the divergence of each basis function is expressed by a t× b
sparse matrix S. The matrix formulation of equation 1 is:

V
T ΩV + jωV

T
AV + S

T ΦS = B.

To solve this system, EMX uses a Krylov-subspace itera-
tive solver [1] combined with a kernel-independent FMM [3]
for the application of the dense matrices A and Φ. In a full-
wave solver, representing and applying the vector potential
matrix A is the most significant cost.

3. REPRESENTATION OF A

There are up to three rooftop functions for each triangle,
and up to four for each rectangle. Consequently, there are
up to sixteen different interactions between a pair of shapes.
This means that the FMM will require about an order of
magnitude more direct interactions for representing A than
for representing Φ.

We now describe a new method for compressing A based
on the curl-free and divergence-free basis functions. A di-
vergence-free function represents a current loop, as shown
in figure 2. For each triangle in the loop, there are two
rooftops: one representing current flow into the triangle, and
one representing current flow out. The amount of current
flowing into each triangle is equal to the amount flowing out,
so there is no charge accumulation anywhere in the loop.

Consider the contribution
R

GA(r′, r)J(r) dr to the vector
potential at r′ due to the current flow J(r) in the shaded

w ← V v

for each shape i, initialize si to the vector (0, 0, 0)
for each rooftop i with coefficient wi

let j be the index of the shape for rooftop i
let ρc be rooftop i evaluated at shape j’s centroid
sj ← sj + wiρc

define matrix As by As(i, j) =
R

i

R

j
GA, where the

integrals are scalar integrals over shapes i and j
multiply componentwise: u← Ass

That is, u is an array of vectors. The
x-components of u are obtained by multiplying
the x-components of s by As, etc.

for each rooftop i
let j be the index of the shape for rooftop i
let ρc be rooftop i evaluated at shape j’s centroid
xi ← ρc · uj

return V T x

Figure 3: Procedure for computing V TAV v

triangle. J(r) is the superposition of two rooftops. If ρ de-
notes the projection of r into the plane of the triangle, then
J(r) = w(ρ − ρ1) − w(ρ − ρ2), where w is some constant.
But this is simply equal to w(ρ2 − ρ1), i.e., the current flow

in a triangle due to a divergence-free basis function is a con-

stant vector. Hence the vector potential contribution is just
w(ρ2 − ρ1)

R

GA(r′, r) dr, and this only requires a simple
scalar integral over the source triangle. Similarly, Galerkin
testing of the vector potential using a divergence-free basis
function requires only a scalar integral over each observation
triangle. These observations lead to the algorithm shown in
figure 3 for computing V TAV times a vector.

This algorithm is exact for the part of V TAV that corre-
sponds to divergence-free source functions interacting with
divergence-free testing functions. For the other parts of
V TAV , it is only an approximation. The approximation
is accurate because the current flow varies smoothly from
shape to shape. Figure 4 shows such a comparison of V TAV v

computed directly and using the method of figure 3. There
are two examples: an inductor and a parallel-plate capaci-
tor. The plot shows the relative error in V TAV v, where v is
the vector of basis function coefficients at solution. V TAV v
for the inductor has minimal error well beyond the induc-
tor’s resonant frequency. The capacitor exhibits a consistent
error of about 0.5%. Note however that the error in the vec-
tor potential for the capacitor is relatively insignificant, since
the overall inductive effects there are parasitic and small.

4. EXPLOITING REGULARITY
Most layouts contain a large amount of regularity, such as

wires of constant widths and at constant spacings. This reg-
ularity can be exploited if the mesh is made up of repeated
instances of a few basic shapes. EMX uses a combination of
heuristic methods to produce regular meshes.

Wire recognition is the most useful heuristic. Figure 5
shows the layout of an MCM balun with the shaded areas
indicating recognized wires. Wires are meshed as indicated
in figure 6. The elements near the edges have a width on the
order of a skin depth. The lengths of most of the elements
are chosen from among a few fixed sizes that are common
to all the wires. In figure 6, the shaded shapes make up
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Figure 4: Relative error in computing V TAV v

Figure 5: Recognized wires (shaded) in a balun

the regular part of the mesh. Shapes that have the same
shading are isomorphic and represent repeated instances of
a single canonical shape.

The meshing method for general regions is based on the
medial axis [8]. Figure 7 shows the mesh of a general region,
with isomorphic shapes shaded identically.

As figures 6 and 7 show, shapes are considered isomor-
phic even when they have been rotated and flipped in vari-
ous ways. Individual shapes in the mesh are represented as
structures containing a transform, an offset, and a reference
to a canonical shape.

EMX takes advantage of mesh regularity to reduce both
the time required to construct the dense matrix represen-
tation and the memory required to store it. The time is
reduced by adding a cache to the integral computation rou-
tines. The cache typically reduces the time required for
integrals by a factor of two to six.

Memory reduction comes from compressing the storage
for the direct interactions. The numeric part of the direct
interactions matrix is viewed as an array of numbers; many

Figure 6: Wire mesh with isomorphic shapes shaded

Figure 7: Medial axis mesh of a general region
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Figure 8: Inductor simulations and measurements

of the numbers are identical because of mesh regularity. Ex-
ploiting this duplication reduces memory by about a factor
of three.

5. EXAMPLES
The following examples were used to demonstrate the per-

formance of EMX: a 3 nH inductor from a foundry 0.25 µm
inductor library (figure 8 shows simulations vs. measure-
ments); a 3-pole filter composed of three inductors and seven
capacitors and fabricated in an MCM technology; the rout-
ing in figure 1 from a 0.18 µm design; and a 5 GHz quadra-
ture VCO [2] (figure 9) which was built in a 5-layer CMOS
process. All examples were run on a 1.5 GHz Compaq Pre-
sario PC. Tolerances were set to give an accuracy of 1%.
The discretization was set so as to achieve convergence in
sensitive quantities like inductor Q.

Table 1 summarizes the results for all the examples. The
table shows the number of ports in the example, the dis-
cretization level, the amount of memory required for the ma-
trix representation, and the time to build the matrix repre-
sentation and do the solves at a single frequency point. The
memory and time statistics are given both with and without
mesh regularization. Even relatively complicated layout has
significant regularity, i.e., the ratio of the canonical shapes
to the total number of shapes is small.

The fairest comparison we could make with other full-
wave field solvers is to IES3 [4]. IES3 uses a similar formu-



Example No Regularization With Mesh Regularization
Basis Vector Matrix Canonical Matrix

Name Ports Shapes Functions Elements Memory Time Shapes Memory Time
3 nH inductor 2 3,400 7,700 11,600 15MB 25s 200 5MB 10s
routing 32 9,500 15,200 30,300 20MB 55s 210 7MB 35s
3-pole filter 2 14,700 23,900 46,500 49MB 90s 630 14MB 55s
VCO 6 57,800 94,500 188,700 306MB 560s 1,300 87MB 365s

Table 1: Summary of time and memory requirements

Basis Matrix Time Memory
Simulator Example Shapes Functions Time Memory IES3/EMX IES3/EMX
IES3 [4] CMOS Inductor (t) 11,500 16,000 500s 267MB — —
EMX Square Inductor (r+t) 11,800 21,600 15s 6MB 33 44
EMX Octagonal Inductor (t) 11,100 16,000 31s 11MB 16 24
EMX Octagonal Inductor (r+t) 6,300 11,200 16s 8MB 31 33

Table 2: Comparison of EMX to IES3

Figure 9: 5 GHz CMOS VCO

lation to EMX, but the mesh is based on Delaunay triangu-
lation, and it uses collocation and SVD compression instead
of a Galerkin method and the FMM. One of the examples
given in that paper was a two-metal CMOS spiral inductor.
We ran EMX on two similar inductors. Table 2 compares
the simulators. The (t) and (r+t) in the second column in-
dicate whether the mesh contains triangles, rectangles, or
both.

6. CONCLUSION
Exploiting layout regularity and using a new representa-

tion of the vector potential interactions together give sig-
nificant time and memory savings in a field solver. When
coupled with fast frequency sweep methods, it should be pos-
sible to extract broadband models of complete RF blocks in
minutes. EMX does not currently exploit hierarchy directly,
but this is a natural extension of the ideas presented.
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